steel supplies

Wagga Wagga

(02) 69718255

Bomen
(02) 69219119

Deniliquin
(03) 58815541

Coolamon
(02) 69273024

Bega
(02) 64947600

TELESCOPING PIPE

NOTE:

Hot dipped galvanized CHS are not precision tubs and all dimensions shown in this chart, although in accordance with the specifications, may vary marginally. Internal weld bead height may need to be considered when a closer fit is required

HOW TO USE THIS CHART:

1. Select the size of the female (or outside) CHS closest to you needs from the left hand column.
2. Depending on the application select the clearance required between the two members. Members may need to slide freely inside each other, or be locked with a pin, spot weld or fixed with wedges. This means in some cases a 'sloppy' fit may be suitable while for others the tightest fit may be appropriate.
3. Having selected the most suitable clearance for your application take the size of the male (inner) selection from column three.
4. Where two telescoping sections are being used, thickness should be similar and will be determined by normal structural requirements. If a third section is to be used, consideration of both clearance and thickness within the size list available may be required.
5. CHS may need to be fixed against twisting by welding or bolting.
6. Press fit. For short pieces with no need for separation or sliding an interference fit can be achieved using the availability ductility of the steel.

Sizes with a clearance less than 2.0 mm are shown in bold in the charts. For tight fits, it is recommended that some form of testing is carried out prior to committing material. While telescoping over some length is desired, additional allowance may be needed for straightness.

NOMINAL BORE SIZE (NB)	FEMALE OUTER (MM)	$\begin{aligned} & \text { O.D. X T } \\ & \text { (MM X MM) } \end{aligned}$	MALE INNER NB	CLEAR (MM)
10	MEDIUM HEAVY	$\begin{aligned} & 17.2 \times 2.3 \\ & 17.2 \times 2.9 \end{aligned}$	n / a n / a	n / a n / a
15	LIGHT MEDIUM HEAVY	$\begin{aligned} & 21.3 \times 2.0 \\ & 21.3 \times 2.6 \\ & 21.3 \times 3.2 \end{aligned}$	$\begin{gathered} \mathrm{n} / \mathrm{a} \\ 8 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{n} / \mathrm{a} \\ & 1.6 \\ & 0.4 \end{aligned}$
20	EXTRA LIGHT LIGHT MEDIUM HEAVY	$\begin{aligned} & 26.9 \times 2.0 \\ & 26.9 \times 2.3 \\ & 26.9 \times 2.6 \\ & 26.9 \times 3.2 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 4.1 \\ & 3.5 \\ & 2.2 \end{aligned}$
25	EXTRA LIGHT LIGHT MEDIUM HEAVY	$\begin{aligned} & 33.7 \times 2.0 \\ & 33.7 \times 2.6 \\ & 33.7 \times 3.2 \\ & 33.7 \times 4.0 \end{aligned}$	$\begin{aligned} & \mathbf{2 0} \\ & \mathbf{2 0} \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 0.4 \\ & 4.8 \\ & 3.2 \end{aligned}$
32	EXTRA LIGHT LIGHT MEDIUM HEAVY	$\begin{aligned} & 42.4 \times 2.0 \\ & 42.4 \times 2.6 \\ & 42.4 \times 3.2 \\ & 42.4 \times 4.0 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \mathbf{2 5} \\ & 20 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.3 \\ & \mathbf{1 . 1} \\ & 6.3 \end{aligned}$

steel supplies

Wagga Wagga (02) 69718255
Bomen (02) 69219119
Deniliquin (03) 58815541
Coolamon (02) 69273024
Bega (02) 64947600

40	EXTRA LIGHT	48.3×2.3	32	0.1
	LIGHT	48.3×2.9	25	7.6
	MEDIUM	48.3×3.2	25	7.0
	HEAVY	48.3×4.0	25	5.4
	SCAFFOLD	48.3×4.9	25	2.4
	EXTRA HAVY	48.3×5.4	n/a	n/a
50	EXTRA LIGHT	60.3×2.3	40	6.4
	LIGHT	60.3×2.9	40	5.2
	MEDIUM	60.3×3.6	40	3.8
	HEAVY	60.3×4.0	40	2.0
	EXTRA HEAVY	60.3×5.4	40	0.2
65	EXTRA LIGHT	76.1×2.3	50	9.8
	LIGHT	76.1×3.2	50	8.0
	MEDIUM	76.1×3.6	50	7.2
	HEAVY	76.1×4.5	50	5.4
	EXTRA HEAVY	76.1×5.9	50	2.6
80	EXTRA LIGHT	88.9×2.6	65	6.0
	LIGHT	88.9×3.2	65	4.8
	MEDIUM	88.9×4.0	65	3.2
	HEAVY	88.9×4.9	65	1.2
	EXTRA HEAVY	88.9×5.9	50	15.3
90	EXTRA LIGHT	101.6×2.6	80	5.6
	LIGHT	101.6×3.2	80	4.4
	MEDIUM	101.6×4.0	80	2.8
	HEAVY	101.6×5.0	80	0.8
100	EXTRA LIGHT	114.3×3.2	90	4.1
	LIGHT	114.3×3.6	90	3.3
	MEDIUM	114.3×4.5	90	1.5
	HEAVY	114.3×5.4	80	12.6
125	EXTRA LIGHT	139.7×3.0	100	16.9
	LIGHT	139.7×3.5	100	15.9
	MEDIUM	139.7×5.0	100	12.9
	HEAVY	139.7×5.4	100	12.1
150	EXTRA LIGHT	165.1×3.0	125	16.4
	LIGHT	165.1×3.5	125	15.4
	MEDIUM	165.1×5.0	125	12.4
	HEAVY	165.1×5.4	125	11.6

